5,679 research outputs found

    Neuronal Expression of Neural Nitric Oxide Synthase (nNOS) Protein is Suppressed by an Antisense RNA Transcribed from an NOS Pseudogene

    Get PDF
    Here, we show that a nitric oxide synthase (NOS) pseudogene is expressed in the CNS of the snail Lymnaea stagnalis. The pseudo-NOS transcript includes a region of significant antisense homology to a previously reported neuronal NOS (nNOS)-encoding mRNA. This suggested that the pseudo-NOS transcript acts as a natural antisense regulator of nNOS protein synthesis. In support of this, we show that both the nNOS-encoding and the pseudo-NOS transcripts are coexpressed in giant identified neurons (the cerebral giant cells) in the cerebral ganglion. Moreover, reverse transcription-PCR experiments on RNA isolated from the CNS establish that stable RNA-RNA duplex molecules do form between the two transcripts in vivo. Using an in vitro translation assay, we further demonstrate that the antisense region of the pseudogene transcript prevents the translation of nNOS protein from the nNOS-encoding mRNA. By analyzing NOS RNA and nNOS protein expression in two different identified neurons, we find that when both the nNOS-encoding and the pseudo-NOS transcripts are present in the same neuron, nNOS enzyme activity is substantially suppressed. Importantly, these results show that a natural antisense mechanism can mediate the translational control of nNOS expression in the Lymnaea CNS. Our findings also suggest that transcribed pseudogenes are not entirely without purpose and are a potential source of a new class of regulatory gene in the nervous system

    Anterograde Signalling by Nitric Oxide: Characterisation and In Vitro Reconstitution of an Identified Nitrergic Synapse

    Get PDF
    Nitric oxide (NO) is recognized as a signaling molecule in the CNS where it is a candidate retrograde neurotransmitter. Here we provide direct evidence that NO mediates slow excitatory anterograde transmission between the NO synthase (NOS)-expressing B2 neuron and an NO-responsive follower neuron named B7nor. Both are motoneurons located in the buccal ganglia of the snail Lymnaea stagnalis where they participate in feeding behavior. Transmission between B2 and B7nor is blocked by inhibiting NOS and is suppressed by extracellular scavenging of NO. Furthermore, focal application of NO to the cell body of the B7nor neuron causes a depolarization that mimics the effect of B2 activity. The slow interaction between the B2 and B7nor neurons can be re-established when the two neurons are cocultured, and it shows the same susceptibility to NOS inhibition and NO scavenging. In cell culture we have also examined spatial aspects of NO signaling. We show that before the formation of an anatomical connection, the presynaptic neuron can cause depolarizing potentials in the follower neuron at distances up to 50 micro(m). The strength of the interaction increases when the distance between the cells is reduced. Our results suggest that NO can function as both a synaptic and a nonsynaptic signaling molecul

    Evaluation of photografted charged sites within polymer monoliths in capillary columns using contactless conductivity detection

    Get PDF
    Capacitively coupled contactless conductivity detection (C4D) is presented as a novel and versatile means of visualising discrete zones of charged functional groups grafted onto polymer based monoliths. Monoliths were formed within 100 μm UV transparent fused silica capillaries and photografting methods were subsequently used to graft a charged functional monomer, 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) onto discrete regions of the “generic” monolith using a photomask. Post-modification monolith evaluation involves scanning the C4D detector along the length of the monolith to obtain a profile of the exact spatial location of grafted charged functionalities with millimetre accuracy. The methodology was extended to the visualisation of several zones of immobilised protein (bovine serum albumin) using photografted azlactone groups to enable covalent attachment of the protein to the monolith at precise locations along its length. In addition, the extent of non-specific binding of protein to the ungrafted regions of the monolith due to hydrophobic interactions could be monitored as an increase in background conductivity of the stationary phase. Finally, the technique was cross-validated using fluorescence microscopy by immobilising green fluorescent protein (GFP) in discrete zones and comparing the profiles obtained using both complementary techniques

    Associative memory stored by functional novel pathway rather than modifications of preexisting neuronal pathways

    Get PDF
    Associative conditioning involves changes in the processing pathways activated by sensory information to link the conditioned stimulus (CS) to the conditioned behavior. Thus, conditioning can recruit neuronal elements to form new pathways for the processing of the CS and/or can change the strength of existing pathways. Using a behavioral and systems level electrophysiological approach on a tractable invertebrate circuit generating feeding in the mollusk Lymnaea stagnalis, we identified three independent pathways for the processing of the CS amyl acetate used in appetitive conditioning. Two of these pathways, one suppressing and the other stimulating feeding, mediate responses to the CS in naive animals. The effects ofthese two pathways on feeding behavior are unaltered by conditioning. In contrast, the CS response ofa third stimulatory pathway is significantly enhanced after conditioning, becoming an importantcontributor to the overall CS response. This is unusual because, in most of the previous examples in which naive animals already respond to the CS, memory formation results from changes in the strength of pathways that mediate the existing response. Here, we show that, in the molluscan feeding system, both modified and unmodified pathways are activated in parallel by the CS after conditioning, and it is their integration that results in the conditioned respons

    Investigating the effect of a stress-based uniaxial anisotropy on the magnetic behaviour of La<sub>0.7</sub>Sr<sub>0.3</sub>MnO<sub>3</sub> elements

    Get PDF
    We investigate the interplay between shape anisotropy and a stress-based uniaxial anisotropy on the magnetic domain structure of La&lt;sub&gt;0.7&lt;/sub&gt;Sr&lt;sub&gt;0.3&lt;/sub&gt;MnO&lt;sub&gt;3&lt;/sub&gt; nanoelements as a function of aspect ratio, using micromagnetic simulations. We show that a direct competition between the anisotropies gives rise to high energy multi-domain flux closure configurations, whilst an alignment of the anisotropies can modify the effective element dimensions and act to stabilise a single domain configuration. Our results demonstrate the ability to control the spin state of La&lt;sub&gt;0.7&lt;/sub&gt;Sr&lt;sub&gt;0.3&lt;/sub&gt;MnO&lt;sub&gt;3&lt;/sub&gt; elements in addition to tailoring the domain wall width by controlling the anisotropy of the material, which is key for spintronic applications that require a high spin-polarization and stable magnetic configurations

    Modeling co-operative volume signaling in a plexus of nitric oxide synthase-expressing neurons

    Get PDF
    In vertebrate and invertebrate brains, nitric oxide (NO) synthase (NOS) is frequently expressed in extensive meshworks (plexuses) of exceedingly fine fibers. In this paper, we investigate the functional implications of this morphology by modeling NO diffusion in fiber systems of varying fineness and dispersal. Because size severely limits the signaling ability of an NO-producing fiber, the predominance of fine fibers seems paradoxical. Our modeling reveals, however, that cooperation between many fibers of low individual efficacy can generate an extensive and strong volume signal. Importantly, the signal produced by such a system of cooperating dispersed fibers is significantly more homogeneous in both space and time than that produced by fewer larger sources. Signals generated by plexuses of fine fibers are also better centered on the active region and less dependent on their particular branching morphology. We conclude that an ultrafine plexus is configured to target a volume of the brain with a homogeneous volume signal. Moreover, by translating only persistent regional activity into an effective NO volume signal, dispersed sources integrate neural activity over both space and time. In the mammalian cerebral cortex, for example, the NOS plexus would preferentially translate persistent regional increases in neural activity into a signal that targets blood vessels residing in the same region of the cortex, resulting in an increased regional blood flow. We propose that the fineness-dependent properties of volume signals may in part account for the presence of similar NOS plexus morphologies in distantly related animals

    Exploring transmission Kikuchi diffraction using a Timepix detector

    Get PDF
    Electron backscatter diffraction (EBSD) is a well-established scanning electron microscope (SEM)-based technique [1]. It allows the non-destructive mapping of the crystal structure, texture, crystal phase and strain with a spatial resolution of tens of nanometers. Conventionally this is performed by placing an electron sensitive screen, typically consisting of a phosphor screen combined with a charge coupled device (CCD) camera, in front of a specimen, usually tilted 70° to the normal of the exciting electron beam. Recently, a number of authors have shown that a significant increase in spatial resolution is achievable when Kikuchi diffraction patterns are acquired in transmission geometry; that is when diffraction patterns are generated by electrons transmitted through an electron-transparent, usually thinned, specimen. The resolution of this technique, called transmission Kikuchi diffraction (TKD), has been demonstrated to be better than 10 nm [2,3]. We have recently demonstrated the advantages of a direct electron detector, Timepix [4,5], for the acquisition of standard EBSD patterns [5]. In this article we will discuss the advantages of Timepix to perform TKD and for acquiring spot diffraction patterns and more generally for acquiring scanning transmission electron microscopy micrographs in the SEM. Particularly relevant for TKD, is its very compact size, which allows much more flexibility in the positioning of the detector in the SEM chamber. We will furthermore show recent results using Timepix as a virtual forward scatter detector, and will illustrate the information derivable on producing images through processing of data acquired from different areas of the detector. We will show results from samples ranging from gold nanoparticles to nitride semiconductor nanorods
    corecore